已知视觉问题答案(VQA)的任务受到VQA模型的问题的困扰,从而利用数据集中的偏见来做出最终预测。已经提出了许多先前基于合奏的偏数方法,其中有目的地训练了一个额外的模型以帮助训练强大的目标模型。但是,这些方法从训练数据的标签统计数据或直接从单局分支中计算出模型的偏差。相反,在这项工作中,为了更好地了解目标VQA模型的偏见,我们提出了一种生成方法来训练偏差模型\ emph {直接来自目标模型},称为GenB。特别是,GENB采用生成网络来通过对抗目标和知识蒸馏的结合来学习偏见。然后,我们将目标模型以GENB作为偏置模型为单位,并通过广泛的实验显示了我们方法对包括VQA CP2,VQA-CP1,VQA-CP1,GQA-OOD和VQA-CE在内的各种VQA偏置数据集的影响。
translated by 谷歌翻译
在现实世界中构建大规模标记的数据集,特别是对于高级任务(例如,视觉问题应答),可能是昂贵且耗时的。此外,随着越来越多的数据和架构复杂程度,积极学习已成为计算机视觉研究的一个重要方面。在这项工作中,我们在Visual问题的多模态设置(VQA)中解决了主动学习。鉴于多模态输入,图像和问题,我们提出了一种通过使用Ad Hoc单模分支来利用其信息来利用其信息来提出一种有效的样本采集的新方法。我们的互信息采集策略单模熵措施(SMEM)除了我们的自蒸馏技术之外,还可以利用所有现有方式,找到最具信息的样本。我们的新颖思想易于实施,成本效益,易于适应其他多模态任务。我们通过与现有的主动学习基线进行比较,通过最先进的性能确认我们的各种VQA数据集。
translated by 谷歌翻译
While witnessing the noisy intermediate-scale quantum (NISQ) era and beyond, quantum federated learning (QFL) has recently become an emerging field of study. In QFL, each quantum computer or device locally trains its quantum neural network (QNN) with trainable gates, and communicates only these gate parameters over classical channels, without costly quantum communications. Towards enabling QFL under various channel conditions, in this article we develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs), and propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs. Compared to the existing depth-fixed QNNs, training the depth-controllable eSQNN architecture is more challenging due to high entanglement entropy and inter-depth interference, which are mitigated by introducing entanglement controlled universal (CU) gates and an inplace fidelity distillation (IPFD) regularizer penalizing inter-depth quantum state differences, respectively. Furthermore, we optimize the superposition coding power allocation by deriving and minimizing the convergence bound of eSQFL. In an image classification task, extensive simulations corroborate the effectiveness of eSQFL in terms of prediction accuracy, fidelity, and entropy compared to Vanilla QFL as well as under different channel conditions and various data distributions.
translated by 谷歌翻译
For more clinical applications of deep learning models for medical image segmentation, high demands on labeled data and computational resources must be addressed. This study proposes a coarse-to-fine framework with two teacher models and a student model that combines knowledge distillation and cross teaching, a consistency regularization based on pseudo-labels, for efficient semi-supervised learning. The proposed method is demonstrated on the abdominal multi-organ segmentation task in CT images under the MICCAI FLARE 2022 challenge, with mean Dice scores of 0.8429 and 0.8520 in the validation and test sets, respectively.
translated by 谷歌翻译
实际数据集中不可避免地有许多错误标记的数据。由于深度神经网络(DNNS)具有记忆标签的巨大能力,因此需要强大的训练方案来防止标签错误降低DNN的概括性能。当前的最新方法提出了一种共同训练方案,该方案使用与小损失相关的样本训练双网络。但是,实际上,培训两个网络可以同时负担计算资源。在这项研究中,我们提出了一种简单而有效的健壮培训计划,该计划仅通过培训一个网络来运行。在训练过程中,提出的方法通过从随机梯度下降优化形成的重量轨迹中抽样中间网络参数来生成时间自我启动。使用这些自我归档评估的损失总和用于识别错误标记的样品。同时,我们的方法通过将输入数据转换为各种形式,并考虑其协议以识别错误标记的样本来生成多视图预测。通过结合上述指标,我们介绍了提出的{\ it基于自动化的鲁棒训练}(SRT)方法,该方法可以用嘈杂的标签过滤样品,以减少其对训练的影响。广泛使用的公共数据集的实验表明,所提出的方法在某些类别中实现了最新的性能,而无需训练双网络。
translated by 谷歌翻译
量子联合学习(QFL)最近受到了越来越多的关注,其中量子神经网络(QNN)集成到联邦学习(FL)中。与现有的静态QFL方法相反,我们在本文中提出了可靠的QFL(SLIMQFL),这是一个动态QFL框架,可以应对时变的通信通道和计算能量限制。通过利用QNN的独特性质,可以分别训练并动态利用其角度参数,从而使其可行。模拟结果证实了SLIMQFL比香草QFL更高的分类精度,尤其是在较差的通道条件下。
translated by 谷歌翻译
联合学习(FL)是一种机器学习(ML)技术,旨在减少对用户数据隐私的威胁。培训是使用用户设备上的原始数据(称为客户端)进行的,只有称为梯度的培训结果被发送到服务器进行汇总并生成更新的模型。但是,我们不能假设可以使用私人信息来信任服务器,例如与数据所有者或数据源相关的元数据。因此,将客户信息隐藏在服务器中有助于减少与隐私相关的攻击。因此,客户身份的隐私以及客户数据的隐私是使此类攻击更加困难的必要条件。本文提出了基于组签名的FL的高效和隐私权协议。一个名为GSFL的新组合签名旨在保护客户数据和身份的隐私,而且考虑考虑到联合学习的迭代过程,还大大降低了计算和通信成本。我们表明,在计算,通信和信号成本方面,GSFL优于现有方法。另外,我们表明所提出的协议可以在联合学习环境中处理各种安全攻击。
translated by 谷歌翻译
现代深度学习在各个领域取得了巨大的成功。但是,它需要标记大量数据,这是昂贵且劳动密集型的。积极学习(AL)确定要标记的最有用的样本,对于最大化培训过程的效率变得越来越重要。现有的AL方法主要仅使用单个最终固定模型来获取要标记的样品。这种策略可能还不够好,因为没有考虑为给定培训数据的模型的结构不确定性来获取样品。在这项研究中,我们提出了一种基于常规随机梯度下降(SGD)优化产生的时间自我汇总的新颖获取标准。通过捕获通过SGD迭代获得的中间网络权重来获得这些自我复杂模型。我们的收购功能依赖于学生和教师模型之间的一致性度量。为学生模型提供了固定数量的时间自我安装模型,并且教师模型是通过平均学生模型来构建的。使用拟议的获取标准,我们提出了AL算法,即基于学生教师的AL(ST-Conal)。在CIFAR-10,CIFAR-100,CALTECH-256和TINY IMAGENET数据集上进行的图像分类任务进行的实验表明,所提出的ST-Conal实现的性能要比现有的获取方法要好得多。此外,广泛的实验显示了我们方法的鲁棒性和有效性。
translated by 谷歌翻译
人们对从长尾班级分布中学习的具有挑战性的视觉感知任务越来越兴趣。训练数据集中的极端类失衡使模型偏向于识别多数级数据而不是少数级数据。最近,已经提出了两个分支网络的双分支网络(DBN)框架。传统的分支和重新平衡分支用于提高长尾视觉识别的准确性。重新平衡分支使用反向采样器来生成类平衡的训练样本,以减轻由于类不平衡而减轻偏见。尽管该策略在处理偏见方面非常成功,但使用反向采样器进行培训可以降低表示形式的学习绩效。为了减轻这个问题,常规方法使用了精心设计的累积学习策略,在整个培训阶段,重新平衡分支的影响逐渐增加。在这项研究中,我们旨在开发一种简单而有效的方法,以不需要优化的累积学习而在不累积学习的情况下提高DBN的性能。我们设计了一种称为双边混合增强的简单数据增强方法,该方法将统一采样器中的一个样品与反向采样器中的另一个样品结合在一起,以产生训练样本。此外,我们介绍了阶级条件的温度缩放,从而减轻对拟议的DBN结构的多数级别的偏见。我们对广泛使用的长尾视觉识别数据集进行的实验表明,双边混合增加在改善DBN的表示性能方面非常有效,并且所提出的方法可以实现某些类别的先进绩效。
translated by 谷歌翻译
有许多基于深卷卷神经网络(CNN)的图像恢复方法。但是,有关该主题的大多数文献都集中在网络体系结构和损失功能上,而对培训方法的详细介绍。因此,某些作品不容易重现,因为需要了解隐藏的培训技巧才能获得相同的结果。要具体说明培训数据集,很少有作品讨论了如何准备和订购培训图像补丁。此外,捕获新数据集以训练现实世界中的恢复网络需要高昂的成本。因此,我们认为有必要研究培训数据的准备和选择。在这方面,我们对训练贴片进行了分析,并探讨了不同斑块提取方法的后果。最终,我们提出了从给定训练图像中提取补丁的指南。
translated by 谷歌翻译